Journal of Business Economics
ISSN 2682- 6933 | E-ISSN 2705-9944
2025 Volume 07 Issue 02:20-28

OPTIMIZED TASK PARALLELISM FOR BIG DATA ANALYTICS IN A DISTRIBUTED
SYSTEM

*R. Sibrikhan?, T. Ketheesan?, T. Jeyamugan3, R. Nagulan*
L2 University of Jaffna, Sri Lanka
34 University of Vavuniya, Sri Lanka
rmsifrikan6500@gmail.com

Abstract

As the scale of big data grows, efficiently processing and analyzing such vast amounts of
information becomes increasingly challenging. Descriptive statistical analysis, crucial in
many domains, often demands significant computation time when applied to large
datasets. This research addresses the problem of slow execution in performing
descriptive statistical analysis and generating graphs on large datasets, which is a
bottleneck for timely insights and decision-making. The objective of this study is to
optimize this process by leveraging task parallelism in a high-performance computing
(hpc) environment. An optimized task-parallelism is introduced, which distributes
computational tasks across multiple nodes using the message passing interface (mpi).
Specifically, tasks such as calculating statistics and generating visual plots (histograms,
percentiles, qq plots, cumulative distribution functions, etc.) Are divided among nodes in
a distributed architecture, significantly reducing the overall processing time. This
approach was evaluated using a large taxi trip dataset comprising approximately two
million records, comparing the execution time of sequential and parallel processing
methods. The results demonstrate that the parallel implementation achieves a 71.29%
reduction in execution time, decreasing from 246.83 seconds (sequential) to 70.89
seconds (parallel). This significant improvement highlights the efficiency and scalability
of the proposed task-parallel solution, offering valuable insights into enhancing big data
analysis performance in distributed environments.

Keywords: Big data analysis, task parallelism, high-performance computing (HPC),
Message Passing Interface (MPI), descriptive statistics

1. Introduction

In modern era, big data forms a critical force in the various fields like medicine, finance, transportation,
and scientific studies. The unstopping proliferation of data quantity, velocity, and diversity (rooted in
sensors, social media, business activities, and scientific instruments) increases accessibility to novel
avenues of insight creation more than ever before. However, there are large and complex analysis
problems involving the storage capability, processing speed, and decision-making in real-time given these
scale and diversified information. Conventional sequential processing modes can no longer serve modern
big data workloads to the extent perceived and required(Kambatla, Kollias, Kumar, & Grama ,2014). The
main challenge associated with big data analysis regards the most efficient implementation of processing
activities. In certain applications where time is crucial in the actual cost of fraud detection, traffic control
or the prognosis of the disease, the cost of analysis can be wasted resources or negative consequences.
With the demands on the analysis performance rising, especially in statistical computation and
visualization(Cook, Lee, & Majumder, 2016), the sequential and single processor constrained execution
are becoming ever more noticeable. In a bid to address these requirements, parallel computing has been
proposed as a major remedy since it can be used to execute tasks in parallel in a variety of processors.

20



R. Sibrikhan, T. Ketheesan, T. Jevamugan, R. Nagulan, Optimized Task Parallelism for Big Data Analytics in
A Distributed System

This parallelism improves speed, resource consumption and scalability thus increasing the degree to
which it can be applied to big and complex data issues. It is in the field of multitasking computing that one
finds a variety of models such as shared memory, distributed memory or hybrid arrangements. Among
this range the Message Passing Interface (MPI) has proved to be especially useful in a distributed context
(Li, Xu, Liu, Zhong, & Wang, 2024). Coordination and communication across processes of different
machines is easily facilitated in MPI which makes it an apt choice when it comes to task distribution
under big data applications (Ang, Ge, & Seng, 2020). In comparison to other mechanisms, like
MapReduce(Cheng, Rao, Guo, & Zhou, 2014), MPI provides more control over the data exchange and most
importantly synchronization-particularly beneficial when the task has interdependencies (Jeyaraj & Paul,
2022).

Sequential processing, in its turn, takes up one task at a time and therefore, cannot be scaled well and
requires more time. Conversely, parallel processing breaks down operations into the smallest units and
these can be executed at the same time which makes processing of data faster and more effective.
Computationally intensive tasks(Chatterjee et al, 2011) like matrix operations, statistical analysis and
visualizations, of which it is naturally possible to divide tasks are especially well suited to parallel
processing(Cook et al, 2016). Descriptive statistical analysis is one of the most important tools of
summarizing and interpreting large scientists. It also shows patterns and trends by calculating notions
like the average, median, mode, standard, skew, and kurtosis. The use of distributed processing is
necessary(Zafari, Larsson, & Tillenius, 2019) to expediently calculate these statistics in big data cases.
Single processor based conventional techniques often face the problem of memory and computation
constraints.

The limitations are alleviated in parallel algorithms, which compute the statistics locally and aggregate
the findings by using the distributed data. Statistical charts and devoid of mathematics
visualization(Wang & Lu, 2020) techniques (histograms, box plots, correlation matrices, etc.) contribute
to a better explanation of statistical patterns. This paper analyses a task-parallel model, which relates to
big data processing of high-performance or high-performance computing (HPC) settings(Paznikov &
Kurnosov, 2024), intending to minimize execution time to provide descriptive statistical analysis and
relevant visualizations(Cook et al., 2016) to enable efficient and effective insights within a shorter period.
The research is carried out by implementing and benchmarking an iterative form of the algorithm and
then creating/implementing a parallel form of the algorithm with MPI or any other
framework(Klinkenberg, Samfass, Bader, Terboven, & Miiller, 2020) that could be used instead. The
parallel algorithm assigns work to a set of machines and uses load-balancing and low-communication
techniques allowing the optimal use of the available machines(Schuchart, Tsugane, Gracia, & Sato, 2018).
An evaluation that includes a comparison between the sequential and parallel implementation is given.
The evaluation includes the analyses of the execution time on different data sizes, tracking resource
consumption (CPU, memory, and network), and performing scalability tests in order to measure the
performance when the number of machines grows.

2. Methodology

We have used an open source, proprietary data set the New York City (NYC) Taxi and Limousine
Commission (TLC) trip record archive. The Data Set contains over two million individual trips records
thus providing a full account of urban transit in the metropolis. The strong set of attributes in each record
with the total size of the dataset reflects not only the potential and the limitation which are the hallmarks
of computation and investigation in realistic big-data systems. The imported dataset was in its native
format and needed only basic cleaning to have the completeness and assure correctness of information.

21



R. Sibrikhan, T. Ketheesan, T. Jevamugan, R. Nagulan, Optimized Task Parallelism for Big Data Analytics in
A Distributed System

2.1. Traditional Sequential Method

The sequential algorithm was first of all implemented and run on a personal laptop to optimize the code,
define baseline performance parameters in a controlled, resource-scarce environment. This strategy
enabled the detection of bottlenecks and areas to optimize before an eventual scaling to a High-
Performance Computing (HPC) system. The algorithm was then run on HPC platform to measure the
improvements in its performance that were generated by parallel processing all the system’s specification
used here are presented in the Table 1.

Table 1: Systems Specification

Specification
System
Processor Ram Storage Operating System
01.Personal Laptop Intel i5 2 Generation 8GB 128GB SSD Windows 10
professional
02. HPC Intel i7 9t Generation 32GB 250GB NVMI Windows 10
professional

To determine baseline and ensure accuracy testing was carried out by means of a sequence of tests on a
personal laptop. These analyses were later performed on a high-performance computing (HPC) system,
which would allow one to compare the execution efficiency, performance assessment, and also decide
upon the optimization strategy to use in generating a parallel implementation. Six variables trip distance,
fare amount, total amount, tip amount, passenger count, and trip duration were used as significant in
defining taxi trips and determining the overall experience and a thorough statistical analysis was applied
to these variables.

The analysis started with descriptive statistics, mean, median and mode, to explain the central tendencies,
and that the highest frequency of values was indicated by mode frequency. The data spread was
estimated by using range, minimum and maximum values, whereas variance and standard deviation were
used to measure variability. The supplying of information on asymmetry and sharpness of peaks,
respective skewness and kurtosis, and the deeper look at the distribution was served by quartiles and the
range between these two values (interquartile range, or IQR). It also involved advanced statistical
measures to add to the analysis. The average deviations around the mean were obtained through mean
absolute deviation (MAD) and the coefficient of variation (CV) provided a standardized variable of
dispersion. Geometric and harmonic means were also computed to provide alternative views on the
aspect of central tendency which is particularly useful in skewed or rate-based data.

2.2. Proposed Parallel Algorithm

This study was based on task-parallelism strategy which greatly increased the speed of the computing by
dividing one large work into several small, independent subtasks that can be performed simultaneously
using more than one processor. To support this parallelism, a distributed architecture was chosen, thus
resulting in significant decreases in the time required in executions- a crucial aspect when it comes to
examining big data due to its demands on computing power.

Communication between nodes was handled using Message Passing Interface (MPI). It has three
interconnected computers through local-area network consisting of a Master node and two Child nodes.
There was sharing of script files that could be accessed by all nodes and hostnames and IP addresses
were configured to allow easy communication and used [P address are presented in the Table 2. The
parallel processing environment has been set by the installation and proper configuration of MPI on
every node and configurations of 3 nodes presented in the Table 3.

22



R. Sibrikhan, T. Ketheesan, T. Jevamugan, R. Nagulan, Optimized Task Parallelism for Big Data Analytics in

A Distributed System
Table 1: Node and Assign IP address
Node IP address
1. Master 192.162.1.1
2. Nodel 192.162.1.2
3. Node2 192.162.1.3
Table 2: Host names and its configured slots
Node Configured Slot
1. Master 1
2. Nodel 1
3. Node2 1

The algorithm executed in parallel Atlas is divided into discrete, independent subtasks, including,
especially, the computation of descriptive statistics and the generation of visualizations (histograms,
percentile plots, Q-Q plots, CDF plots, correlation matrices). These Tasks can be undertaken
simultaneously, hence maximizing the use of resources and making the execution processes less time
consuming. The Master node performs this partitioning: it reads up the data, computes descriptive
statistics and controls percentile-Plots. It then assigns the rest of the child tasks as same as in the figure 2,
Child Node 1 gets Q-Q plot and correlation matrix and Child Node 2 gets the histogram and CDF plot.
Subtasks performed by each child node separately and their results are reported to the Master node to be
combined it shown clearly in the figure 3.

The approach towards task distribution is designed based on five principles. First task independence
guarantees that any subtask can proceed without depending on others, so that actual parallel operation
can actually occur, for example one node could make Q-Q plots as another makes histograms. Second, the
balance of workloads is ensured by assigning two sub-tasks to each kid node and, thus, adjusting
computational effort between the nodes. Third, a consensus is maintained by working with a single
dataset and descriptive statistics at all nodes thus averting differences. Fourth, overhead required to
communicate is low since only the passage of subtasks and product of work is communicated between
nodes. Lastly, the centralized control architecture will be adopted whereby master node will orchestrate
the task allocation, monitor the workflow and compile the output to consume coherent and effective
deployment.

23



R. Sibrikhan, T. Ketheesan, T. Jevamugan, R. Nagulan, Optimized Task Parallelism for Big Data Analytics in
A Distributed System

M - Master Nodo
M1 - Child Node 1
N2 - Child Node 2
LAN - Local Area Natwork

(] (OG0
Bl
LAN

N1

Figure 1: Experimental Setup for Parallel Execution

M - Master Node

N1 = Child Node 1

N2 - Child Node 2

LAN - Local Area Natwork

]
L

COF Plot &
Histogram

gorss
lation Matrix NA

Figure 2: Master Executed & send the results to N1 & N2 and Both generate plots

M - Master Node
N1-Child Hode 1

M2 - Child Node 2

LAN - Local Area Network

DS analysis
percentilos t

QQPlot &

Corrslation Matrix e
1 | i 1 1
T 1 f——— a— . 1 1
N 0
LAN
NA N2

Figure 3: N1 & N2 Send the plots to Master Node

24



R. Sibrikhan, T. Ketheesan, T. Jevamugan, R. Nagulan, Optimized Task Parallelism for Big Data Analytics in

N1

B o= B
LAN

n2

Figure 4: Master Node receives and saves the plots

A Distributed System
M

DS mﬂ.L:h ﬁi
M - Master Node .- z‘n':':'l“‘ : e
H1 - Child Hode 1 o
N2 - Child Node 2 Histogram
LAN - Local Area Network —f QQ Plot &

Corralation Matrix

o o] ool

In order to balance workload and reduce idleness, the Research often divide the tasks based on the plot
types. The Algorithm has been presented as follows:

Step 1: Initialize MPI.
Step 2: Get the rank of the Communicator
Step 3: Ifrank = 0 (Master Node):

3.1: Load Dataset.

3.2: Compute the descriptive Statistics.

3.3: Get the results and send it to Node1 and Node2
3.4: Generate Percentile Plot.

3.5: Receive Plots from Nodel and Node2.

3.6: Store all the plots.

Step 4: Ifrank = 1 (Node1l):

4.1: Receive stats for QQ Plot and Correlation Matrix.
4.2: Generate the Plots.
4.3: Send Plots to Master Node.

Step 5: Ifrank = 2 (Node2):

Step 6: End

5.1: Receive stats for CDF Plot and Histogram.
5.2: Generate the Plots.
5.3: Send Plots to Master Node.

3. Discussion and Results

The current study attempted to compare the relative performance of sequential and parallel processing

paradigms, namely, in terms of execution time. When the analyses were performed on laptop one task
after another, the total running time was 404.15 s. This is seen as a long time that highlights the

drawbacks of sequential processing and the case used in large-sized data sets where each operation has

to be completed before the other can be undertaken. Sequential method of execution is obviously linear

and thus does not easily provide an opportunity to optimize over time against constrained hardware. A

second successive test was performed on the master node; an efficient machine compared to the regular
laptop and time of execution was lowered to 246.83s. Sequential method was time-consuming and less

25



R. Sibrikhan, T. Ketheesan, T. Jeyamugan, R. Nagulan, Optimized Task Parallelism for Big Data Analytics in
A Distributed System

efficient in dealing with large data although hardware configuration had a great impact on efficiency
regarding the processing. However, the same tasks were performed in parallel on three nodes including
the master node, 20% has been cut off the total execution time resulting in the entire job being completed
within 70.89 s.

The result shows that large performance improvements can be done by parallel execution of tasks.
Assigning self-sufficient operations to two or more nodes and their simultaneous implementation reduces
time consuming, as well as underutilization making the best of every resource. The fall of 404.15s in
personal laptop’s sequential execution and 246.83s in efficient machine’s sequential execution. In
distributed parallel execution results to an increased execution time has been reduced to 70.89s of more
than 71.29%. The observed results prove the efficiency of task parallelism when analyzing big data, and
temporal efficiency varies in importance. Furthermore, the results confirm the purpose of the current
study, which is to minimize the execution time using the parallel computing model and outlines the
feasible merits of following the parallel architecture in practical data processing environments.

The speedup measure estimates the benefits that are obtained by using parallel processing compared to
serial processing. In this case, a speedup of 3.48 implies that the parallel paradigm reduces results by
about three times speeder than a sequential computation in the master node Complete Details with used
system for this research including the execution time and speedup presented in the Table 4. The
significant increase can serve as a reminder of how effective parallel processing can become, when
dealing with extensive sets of data, as well as a second confirmation that parallel processing is ideally
suited to improving computational efficiency in distributed computing systems. Specifically, the
conclusion indicates the utility, in specific situations involving large amounts of input data, of parallel
processing such as demonstrated by the value of division of work and parallel execution of work in
continuing to create significant increase in speed of processing and speed of the system as a whole.

Table 3: Execution Time and Speedup Factor for Sequential vs. Parallel Processing

Sequential Execution Parallel Execution Time

E tion Envi t Speed
xecution Lnvironimen Time (seconds) (seconds) peedup

01.Personal Laptop 404.15 N/A N/A

02.HPC 246.83 70.89 3.48

Comparison of Execution Times for Different Configurations - =
Speedup Achieved by Parallel Processing

3.a8x
35| -~ Daseline Speadup

404.155

w
=

I

246,835

¥
@

Execution Time (seconds)

1.00x

Speedup Factor (x times faster)

H]
=
|

70.89s

Laptop (Sequential) Master Node {Sequential) 3 Master Nodes (Parallel) Sequential Execution Parallel Execution
{Master Node Baseline} 13 Nodes

Figure 1: Execution time by Figure 2: Speedup factor relative to
configuration. Parallel processing on master node sequential execution and
three nodes parallel execution.

26



R. Sibrikhan, T. Ketheesan, T. Jevamugan, R. Nagulan, Optimized Task Parallelism for Big Data Analytics in
A Distributed System

4. Conclusion

This research proves there are considerable benefits of parallel computing as applied to big-data
analyses, especially in distributed computing environments using task parallelism. A direct comparison of
the sequential and parallel processing methodologies using a common dataset has shown that the
sequential processing by the master node took 246.83 seconds and the parallel processing by three nodes
took 70.89 seconds. This decrease reinforces the fact that high performance can be gained by using
parallelization. These results show that parallel processing can be used to process large datasets more
efficiently, a concern of paramount concern in big-data environments where data sizes are quickly
becoming prohibitive to single-node systems.

In particular, task parallelism can be viewed as a powerful process of spreading the load between several
nodes and maximizing the use of resources, as well as reducing the execution time. The results are of
specific importance to real-time data analysis and any other application based on speed and efficiency.
Another fact that the study confirms is that parallel processing is the best way to use resources since it
takes advantage of the computing capabilities of many nodes. Such scalability is essential to big-data
analysis, where the processing can scale up with the volume of data without similarly increasing the
amount of time spent on the computation. The study thus recommends that to achieve maximum
performance in parallel computing environment, task distribution and communication between nodes
ought to be optimized and reduced as much as possible. Despite the strong rationale of the benefits of
parallel computing, there are certain limitations that have to be considered. Here we used only one
dataset and few nodes, which are unlikely to reflect the magnitude of such an approach on more
heterogeneous or larger deployments. The impacts of scaling the number of nodes, using parallel
processing on a variety of datasets, and solving more complex tasks related to the analysis should be
studied in the future.

Reference

Ang, K. L. M,, Ge, F. L., & Seng, K. P. (2020). Big educational data analytics: Survey, architecture, and
challenges. /EEE Access, 8 116392-116414. https://doi.org/10.1109/ACCESS.2020.2994561

Chatterjee, S., Tasirlar, S. G., Budimli¢, Z., Cavé, V., Chabbi, M., Grossman, M,, ... Yan, Y. (2011). Integrating
asynchronous task parallelism with MPI. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (5C "11). Association for Computing
Machinery. https://doi.org/10.5555/2042476.2042517

Cheng, D., Rao, ], Guo, Y., & Zhou, X. (2014). Improving MapReduce performance in heterogeneous
environments with adaptive task tuning. In Proceedings of the 15th International Middleware
Conference (Middleware 2014) (pp. 97-108). Association for Computing Machinery.
https://doi.org/10.1145/2663165.2666089

Cook, D, Lee, E. K,, & Majumder, M. (2016). Data visualization and statistical graphics in big data analysis.
Annual Review of Statistics and Its Application, 3, 133-159. https://doi.org/10.1146/annurev-
statistics-041715-033420

Jeyaraj, R., & Paul, A. (2022). Optimizing MapReduce task scheduling on virtualized heterogeneous
environments using ant colony optimization. /EEE Access, 10, 55842-55855.
https://doi.org/10.1109/ACCESS.2022.3176729

Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of Paralle/
and Distributed Computing, 74(7), 2561-2573. https://doi.org/10.1016/j.jpdc.2014.01.003

Klinkenberg, ]., Samfass, P., Bader, M., Terboven, C., & Miiller, M. S. (2020). CHAMELEON: Reactive load
balancing for hybrid MPI+OpenMP task-parallel applications. Journal of Parallel and Distributed
Computing, 138, 55-64. https://doi.org/10.1016/j.jpdc.2019.12.005

27



R. Sibrikhan, T. Ketheesan, T. Jevamugan, R. Nagulan, Optimized Task Parallelism for Big Data Analytics in
A Distributed System

Li, Y, Xu, ], Liu, Y., Zhong, W., & Wang, F. (2024). MPI/OpenMP-based parallel solver for imprint forming
simulation. CMES - Computer Modeling in Engineering and Sciences, 140(1), 461-483.
https://doi.org/10.32604 /cmes.2024.046467

Paznikov, A. A., & Kurnosov, M. G. (2024). MPI task mapping for multi-cluster HPC systems. In £3S Web of
Conferences (Vol. 548, Article 03006). EDP Sciences.
https://doi.org/10.1051/e3sconf/202454803006

Schuchart, ], Tsugane, K., Gracia, ], & Sato, M. (2018). The impact of taskyield on the design of tasks
communicating through MPIL. In Lecture Notes in Computer Science (Vol. 11128, pp. 3-17).
Springer. https://doi.org/10.1007/978-3-319-98521-3_1

Wang, W.,, & Lu, C. (2020). Visualization analysis of big data research based on CiteSpace. Soft Computing,
24(11),8173-8186.
https://doi.org/10.1007 /s00500-019-04384-7

Zafari, A., Larsson, E., & Tillenius, M. (2019). DuctTeip: An efficient programming model for distributed
task-based parallel computing. Parallel Computing, 90, Article 102582.
https://doi.org/10.1016/j.parco.2019.102582

28



